Abstract

Photocatalytic antimicrobials, as emerging advanced oxidative antimicrobial materials, have the advantages of low price and long-lasting antimicrobial properties. Nevertheless, with catalysts increasingly trending toward nanoscale dimensions, the environmental challenge of catalyst recycling becomes more pronounced. In this paper, we propose utilizing one-dimensional carbon fiber as a substrate, employing the nucleating agent method to induce Titanium dioxide (TiO2) growth on the fiber surface. Furthermore, the material's band gap underwent modification through hydrogen calcination, thus resulting in the attainment of hierarchical black TiO2/carbon fiber composites with visible light-driven capabilities. The characterization of the materials was conducted via scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results revealed that when the black hydrogenated TiO2 was composited with carbon fiber, the Schottky heterojunction was formed, and thus effectively improved the photocatalytic effect of the composites. Notably, the degradation rate of methylene blue achieved 96.25% within 150 min when utilizing black TiO2/carbon fiber composites, while the inactivation rate of Escherichia coli (E. coli) reached 97.58% within 0.5 h and attained complete inactivation within 60 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call