Abstract

Solar steam generation has been considered one of the most promising approaches for dealing with the energy and freshwater resource crises in recent years. However, achieving high efficiency in photo-thermal conversion remains a considerable challenge. Here, a series of hierarchical Ti3C2/MoS2 nanocomposites were designed for steam generation by a hydrothermal method. When the mass fraction of MoS2 reached 65 wt% (TM-3), the Ti3C2/MoS2 nanocomposite presented a strong broad-band light absorption of 92.4% from the UV to NIR region because of the accordion-like layered structure. The evaporation rate and solar-thermal conversion efficiency of the TM-3 with as-fabricated evaporator could reach 1.36 kg·m−2·h−1 and 87.2% under 1 kW/m2, due to the excellent light absorption ability of TM-3 and the low thermal energy loss (8.8%) of the evaporator. Meanwhile, TM-3 permits the evaporator to have remarkable cycle stability because of its hydrophobic properties. Moreover, TM-3 showed excellent seawater desalination and wastewater treatment abilities. Thus, the excellent light absorption ability, photo-thermal conversion efficiency, and stability of the overall system suggested that these nanocomposites show great potential applications in synergetic solar desalination and sewage treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.