Abstract

To construct RNAi recombinant adenoviral expressive vectors specific to glycogen synthase kinase-3beta (GSK-3beta) and to observe its gene knockdown effect on the expression of GSK-3beta, and to explore the effect of Wnt/beta-catenin pathway on the proliferation of human thyrocytes using the RNAi adenovirus vector. An adenovirus plasmid that contained the RNAi cassette targeting the GSK-3beta gene was constructed by homologous recombination and cloning techniques, transfected into human embryo kidney (HEK) 293A cells to product adenovirus, and then was used to infect the HEK293A cells to amplify the adenoviral stock. Plaque forming assay was used to titer the adenoviral stock. Normal human thyrocytes fart from thyroid adenoma were obtained during resection of adenoma, cultured, and infected by the GSK-3beta specific RNAi adenovirus. The GSK-3beta gene silencing effect induced by the RNAi adenovirus was detected by Western blotting 0, 24, 48, 72, 120, and 144 hours later. BrdU method was used to detect the cell proliferation. Another HEK293A cells were divided into 3 groups: infected with recombinant adenovirus plasmid Ad-1457, infected with un-recombinant framework plasmid pAd-DEST, and un-infected. 72 hours later Western blotting was used to examine the level of beta-catenin. The GSK-3beta expression of the thyrocytes infected with the recombinant adenovirus plasmid Ad-1457 were significantly lower than those of the thyrocytes infected with Ad-DEST (all P<0.05). The expression of beta-catenin of the thyrocytes infected with Ad-DEST was significantly higher than those of the Ad-DEST group and un-infected group (both P<0.05). BrdU assay suggested that the proliferation rates 1, 3, 5, and 7 days after infection of the thyrocytes infected with Ad1457 plasmid were significantly higher than those of the thyrocytes infected with the plasmid pAd-DEST (all P<0.05). RNAi adenovirus is an important tool inhibiting the expression of target gene efficiently. The Wnt/beta-catenin pathway plays an important role in the regulation of proliferation of human thyrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.