Abstract

Two-dimensional heterojunction g-C3N4/BCN was constructed via thermal polymerization process. The formed two-dimensional heterostructure could enhance the interfacial contact area between BCN and porous g-C3N4 as well as shorten the photogenerated charge carriers transfer time and distance. The two-dimensional g-C3N4/BCN heterojunction photoanode shows enhanced photoelectrochemical (PEC) performance for water splitting under visible-light irradiation, which primarily originates from the improved charge transfer and separation, and prolonged lifetime of electrons. Under the visible light irradiation, the g-C3N4/BCN heterojunction sample yields a photocurrent density of ∼0.62 mA cm−2 at 1.23 V vs. RHE, which is about eight times as many as that of CN (0.08 mA cm−2) electrode at the same conditions. In addition, the possible electron transfer model and mechanism of PEC water splitting for H2 evolution have been discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call