Abstract

Nitrogen defect engineering has been confirmed to be an effective strategy to improve photocatalytic performance, and nitrogen vacancies at different positions show different effects on photocatalytic performance. Here, we prepare g-C3N4 with three-coordinate nitrogen (N3C) vacancies (g-C3N4-N3C) by a simple in situ copyrolysis method. The introduction of N3C vacancies helps to narrow the band gap, enhance the light-harvesting efficiency, accelerate the separation and transfer of photogenerated carriers, and provide more active centers. Interestingly, g-C3N4-N3C exhibits photocatalytic performance for the production of NH3 and H2O2. The optimized g-C3N4-N3C-0.3 exhibits the best photocatalytic N2 fixation rate (1915 μmol h−1 g−1) and photocatalytic H2O2 production rate (1098 μmol h−1 g−1), with corresponding apparent quantum efficiency (AQE) of 7.79 % and 12.43 % at λ = 370 nm, respectively, which are superior to most known photocatalysts. Meanwhile, density functional theory (DFT) calculations indicate that g-C3N4-N3C makes the activation and further reduction of *N2 and *O2 more thermodynamically favorable than pure g-C3N4. This work deepens the understanding of the role of nitrogen defect engineering in enhancing the photocatalytic performance of g-C3N4, and provides a new way for the design and preparation of efficient and stable photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.