Abstract

The reduction of soluble U(VI) to insoluble U(IV) by photocatalytic technology is considered to be a valid method to remove U(VI) from water. Herein, g-C3N4/Ag/TiO2 Z-scheme heterojunction was synthesized for photocatalytic U(VI) reduction application. The SEM, XRD and XPS characterization results showed that a ternary g-C3N4/Ag/TiO2 composite photocatalyst was synthesized successfully. g-C3N4/Ag/TiO2 exhibited excellent photocatalytic reduction performance for U(VI) under visible light irradiation. After 30 min irradiation, the removal rate of U(VI) was above 99%. XPS indicated that the majority of U(VI) on the surface of g-C3N4/Ag/TiO2 was reduced to U(IV). In addition, the photocatalytic activity of g-C3N4/Ag/TiO2 has been kept significantly after five rounds of experiments, indicating good stability. g-C3N4/Ag/TiO2 exhibited better photocatalytic reduction of U(VI) under visible light irradiation, which is mainly ascribed to Z-scheme photocatalytic mechanism assisted by the LSPR effect (Local Surface Plasmon Resonance). Ag with plasmon resonance effect on the loading has a strong absorption of photon energy. In addition, an intermediate charge transfer channel is formed between Ag and the semiconductor to inhibit the combination of photogenerated electrons and holes, resulting in a significant increase in the photocatalytic activity of the photocatalyst. This idea has some significance in design of other composite photocatalytic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call