Abstract

Abstract This account discusses construction strategies for various functional biomaterials based on the designed self-assembly of biomolecules. Novel glycoclusters with regular intervals were developed by self-assembly of carbohydrate-conjugated oligodeoxyribonucleotides (ODNs) with the half-sliding complementary ODNs. Complexes of carbohydrate-modified DNA and lectin afforded a new regulation system for gene expression. DNA three-way junctions bearing self-complementary sticky-ends were self-assembled into nanometer-to-micrometer-sized spherical structures depending on the concentration. The three-way component design was extended to the design of an artificial trigonal peptide conjugate. The trigonal peptide conjugates bearing β-sheet-forming peptides or glutathione self-assembled into nano-sized spherical assemblies. Self-assembly of β-annulus peptide derived from tomato bushy stunt virus afforded artificial viral capsids, which can encapsulate and be modified with various molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call