Abstract
Emerging food processing technologies provide broader avenues for enhancing probiotic delivery systems. In this study, the new Fu brick tea polysaccharide (FBTP) was extracted and combined with cold plasma-modified alginate nano-montmorillonite (AMT) to prepare microgels by ionic gelation to improve the viability of encapsulated Lactobacillus kefiranofaciens JKSP109. Results showed that cold plasma treatment for 3 min changed the surface charge of AMT biopolymer solution, and FBTP addition reduced the particle size to the lowest of 223 ± 5.50 nm. Morphological analysis showed that the AMT treated with cold plasma for 3 min and FBTP (C3AMT + FBTP) formed a dense microgel through electrostatic interaction, and the probiotics were randomly distributed in their internal polysaccharide network, as well as the interlayer and surrounding of nanoparticles. The probiotics immobilized in C3AMT + FBTP microgel exhibited the highest viability (8.48 ± 0.03 log CFU/g) and colonic colonization after exposure to simulated gastrointestinal conditions. In addition, the good antioxidant activity of FBTP reduced the loss of probiotic viability during storage, with only 2.58 log CFU/g decreased after 4 weeks. Therefore, such probiotic products enriched with natural bioactive ingredients can be developed as a potential functional food additive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.