Abstract

Nasopharyngeal carcinoma is a poorly differentiated upper respiratory tract cancer that highly expresses human folate receptors (hFR). Binding of folate to hFR triggers endocytosis. The folate was conjugated into adenosine 5'-monophosphate (AMP) by 1,6-hexanediamine linkages. After reverse HPLC to reach 93% purity, the folate-AMP, which can only be used for transcription initiation but not for chain extension, was incorporated into the 5'-end of bacteriophage phi29 motor pRNA. A 16:1 ratio of folate-AMP to ATP in transcription resulted in more than 60% of the pRNA containing folate. A pRNA with a 5'-overhang is needed to enhance the accessibility of the 5' folate for specific receptor binding. Utilizing the engineered left/right interlocking loops, polyvalent dimeric pRNA nanoparticles were constructed using RNA nanotechnology to carry folate, a detection marker, and siRNA targeting at an antiapoptosis factor. The chimeric pRNAs were processed into ds-siRNA by Dicer. Incubation of nasopharyngeal epidermal carcinoma (KB) cells with the dimer resulted in its entry into cancer cells, and the subsequent silencing of the target gene. Such a protein-free RNA nanoparticle with undetectable antigenicity has a potential for repeated long-term administration for nasopharyngeal carcinoma as the effectiveness and specificity were confirmed by ex vivo delivery in the animal trial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.