Abstract

A fluorescence and colorimetric tandem dual-mode sensor was established by modulating fluorescence and oxidase-like activity via valence switching of cerium-based coordination polymer nanoparticles (Ce-CPNs) for the detection of sarcosine (Sar) which is considered as a potential biomarker for the diagnosis of prostate cancer (PCa). In the present research, sarcosine oxidase (SOX) specifically catalyzes the oxidation of Sar to yield H2O2 which can rapidly oxidize Ce(III)-CPNs to generate Ce(IV)-CPNs in appropriate alkaline solution. The generated Ce(IV)-CPNs create a markedly weakened fluorescent signal at 350nm, while they can induce oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue TMBox through emerging good oxidase-like activity. The sensing platform can realize accurate, stable, and high-throughput detection of Sar because of the tandem dual signal output mechanism. More attractively, the chromogenic hydrogel sensing device using smartphone photographing has achieved perfect results for the on-site sensing of Sar in urine specimens without large experimental equipments, demonstrating its considerable clinical application potential in the early diagnosis of PCa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call