Abstract

Antimony-based oxides with conversion-alloying/dealloying mechanism have attracted great attentions as alternative anode materials for lithium/sodium-ion batteries due to their high theoretical capacities. However, slow reaction kinetics, inherent poor conductivity and large volume change severely inhibit their practical application. Herein, a novel composite with FeSbO4-Sb2O4 hetero-nanocrystals anchored on reduced graphene oxide (rGO) sheets is designed and successfully constructed by a facile solvothermal method. The intense interaction between Fe3+ and Sb5+ oxidized from Sb3+ by graphene oxide (GO) boosts priority formation of rutile FeSbO4 nanoparticles. And the excess Sb3+ and Sb5+ subsequently generate nano-sized cervantite Sb2O4 to form FeSbO4-Sb2O4 hetero-interface. Such unique structure not only can enhance electrical conductivity and structural stability of electrode, but also shorten diffusion distance of lithium/sodium ions during discharge/charge processes. Moreover, the in-situ generated Fe during electrochemical reaction can boost lithium/sodium release from Li2O/Na2O. Attributed to the unique structure, the as-obtained FeSbO4-Sb2O4/rGO-200 electrode delivers greatly improved electrochemical performance for both lithium and sodium storage, including large reversible capacities, high rate capability, and superior long-term cycling stability. This work provides an efficient route to rationally design and synthesize hetero-structural composites boosting lithium-/sodium-storage properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call