Abstract

We study the local implementation of positive-operator-valued measures ~POVMs! when we require only the faithful reproduction of the statistics of the measurement outcomes for all initial states. We first demonstrate that any POVM with separable elements can be implemented by a separable superoperator, and develop techniques for calculating the extreme points of POVMs under a certain class of constraint that includes separability and positive partial transposition. As examples we consider measurements that are invariant under various symmetry groups ~Werner, isotropic, Bell diagonal, local orthogonal!, and demonstrate that in these cases separability of the POVM elements is equivalent to implementability via local operations and classical communication ~LOCC!. We also calculate the extrema of these classes of measurement under the groups that we consider, and give explicit LOCC protocols for attaining them. These protocols are hence optimal methods for locally discriminating between states of these symmetries. One of many interesting consequences is that the best way to locally discriminate Bell-diagonal mixed states is to perform a two-outcome POVM using local von Neumann projections. This is true regardless of the cost function, the number of states being discriminated, or the prior probabilities. Our results give the first cases of local mixed-state discrimination that can be analyzed quantitatively in full, and may have application to other problems such as demonstrations of nonlocality, experimental entanglement witnesses, and perhaps even entanglement distillation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.