Abstract

Urgency of the research. Computer models mean new quality in the knowledge process. Using a computer model, the properties of the subject under investigation can be tested under different operating conditions. By experimenting with a com-puter model, we learn about the modelled object. We can test different machine variants without having to produce and edit prototypes. Target setting. The development of computer technology has expanded the possibility of solving mathematical models and allowed to gradually automate the calculation of mathematical model equations. It is necessary to insert appropriate inputs of the mathematical model and monitor and evaluate the output results through the computer output device The target was to describe the mathematical apparatus required for mathematical modeling and subsequently to compile a model for computer modeling. Actual scientific researches and issues analysis. When formulating a mathematical model for a computer, the laws and the theory we use are always valid under more or less idealized conditions, and operate with fictitious concepts such as, material point, ideal gas, intangible spring, and the like. However, with these simplifications, we describe a realistic phenomenon where the initial assumptions are only met to a certain extent. In order for the results not to be different from the modeled reality, it is to be assumed that a good computer model arises gradually, by verifying and modifying it, which is one of the advantages of MSC Adams. Uninvestigated parts of general matters defining. The question of building a real manipulator model. Based on the above simulation, it is possible to build a real model. The research objective. Using MSC Adams to simulate multiple body systems and verify its suitability for simulating ma-nipulator and robot models. In various versions of the assembled model we can monitor its behavior under different operating conditions. The statement of basic materials. In computer simulation, MSC Adams-View is used to simulate mechanical systems. It has an interactive environment for automated dynamic analysis of parameterized mechanical systems with an arbitrary struc-ture of rigid and flexible bodies with geometric or force joints, in which act gravity, inertia, experimentally designed contact, friction, aerodynamic, hydrodynamic or electromechanical forces and have integrated control, hydraulic, pneumatic or elec-tromechanical circuits. Conclusions. Working with a mathematical model on a computer opens space for specific synthesis of empirical and ana-lytical method of scientific knowledge. Working with the computer model carries the characteristic features of classical experi-mentation. It represents a qualitatively new way of solving tasks that can not be experimented with on a real object. The result is the equivalence of the computer model and the object being investigated with the features and expressions chosen as essen-tial, with accuracy sufficient to the exact purpose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call