Abstract

Electrochemical nitrate reduction is a promising remediation strategy for nitrate-contaminated wastewater treatment, in which nitrate adsorption is a prerequisite step in the overall process. Herein, the iron-induced cobalt phosphide was grown in situ on porous nickel foam (Fe-CoP/NF) for the electrochemical nitrate reduction. Structural characterization verified doping of Fe and the uniform nanotube arrays of Fe0.03CoP/NF. Remarkably, the Fe0.03CoP/NF exhibited a high efficiency nitrate removal efficiency (99.3%) and excellent ammonia selectivity (100% selectivity and 0.485mg·h-1cm-2 NH3 yield rate). Both experimental and theoretical results reveal that Fe doping alters the local charge distribution of the Co active centers to form electron-deficient Co. The Co electron-deficient regions were constructed due to the difference in electronegativity between Co and Fe. Furthermore, the formation of electron-deficient centers facilitates the reduction of charge transfer resistance. In particular, Fe0.03CoP/NF maintained an excellent conversion efficiency of nitrate to N2 (99.8%) with 60mM Cl−, and the selectivity of N2 is maintained above 99.1% during long-term operation. This system possesses a low electrical consumption of 1.79 kWh·molN-1. This study designed an enhanced electrocatalyst through enhanced nitrate absorption and direct electron transfer strategies, thus providing a promising and low-power consumption approach for addressing nitrate pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.