Abstract

In this study, a novel dual-mode aptamer sensor was developed using Fca-DNA2 as the quenching electrochemiluminescence (ECL) and electrochemical (EC) signal response probe, and Ru-MOF/Cu@Au NPs were used as the ECL substrate platform to detect Alternariol (AOH) via a competitive reaction between AOH and Fca-DNA2. Compared with the conventional aptamer sensor with a single detection signal, this dual-mode aptamer sensor has the following advantages: (1) Electrodeposition-based rapid synthesis Ru-MOF on the electrode surface. (2) The Signal amplification substance Cu@Au NPs can synergistically catalyze Triethanolamine (TEOA) to amplify ECL behavior. (3) The aptamer sensor employs the dual-functional material Fca, which can detect both ECL and EC signals, increasing the result accuracy. Both ECL and EC methods have excellent detection performance for AOH in the detection range of 0.1 pg/mL to 100 ng/mL, with detection limits of 0.014 and 0.083 pg/mL, respectively, and are expected to be used for sensitive AOH detection in real samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.