Abstract

As an important role in life activities, it is necessary and important to study protein glycosylation. The pre-enrichment of N-glycopeptides is a significant step in glycoproteomics research. According to the inherent size, hydrophilicity and other properties of N-glycopeptides, affinity materials designed to match them will be able to separate N-glycopeptides from complex samples. In this work, we designed and prepared dual-hydrophilic hierarchical porous metal-organic frameworks (MOFs) nanospheres by metal-organic assembly (MOA) based template method and post-synthesis modification strategy. The hierarchical porous structure significantly improved the diffusion rate and binding sites for N-glycopeptide enrichment. Furthermore, the combination of hydrophilic MOFs and small molecules endowed the as-prepared MOFs nanospheres excellent hydrophilicity, which is conducive to the enrichment of N-glycopeptides based on hydrophilic interaction liquid chromatography (HILIC). Therefore, the nanospheres showed surprising enrichment ability for N-glycopeptides such as excellent selectivity (1/500, human serum immunoglobulin G/bovine serum albumin, m/m) and extremely low detective limitation (0.5 fmol). Meanwhile, 550 N-glycopeptides were identified from rat liver samples, proving its application potential in glycoproteomics research and providing design idea for porous affinity materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call