Abstract

As an important role in life activities, it is necessary and important to study protein glycosylation. The pre-enrichment of N-glycopeptides is a significant step in glycoproteomics research. According to the inherent size, hydrophilicity and other properties of N-glycopeptides, affinity materials designed to match them will be able to separate N-glycopeptides from complex samples. In this work, we designed and prepared dual-hydrophilic hierarchical porous metal-organic frameworks (MOFs) nanospheres by metal-organic assembly (MOA) based template method and post-synthesis modification strategy. The hierarchical porous structure significantly improved the diffusion rate and binding sites for N-glycopeptide enrichment. Furthermore, the combination of hydrophilic MOFs and small molecules endowed the as-prepared MOFs nanospheres excellent hydrophilicity, which is conducive to the enrichment of N-glycopeptides based on hydrophilic interaction liquid chromatography (HILIC). Therefore, the nanospheres showed surprising enrichment ability for N-glycopeptides such as excellent selectivity (1/500, human serum immunoglobulin G/bovine serum albumin, m/m) and extremely low detective limitation (0.5 fmol). Meanwhile, 550 N-glycopeptides were identified from rat liver samples, proving its application potential in glycoproteomics research and providing design idea for porous affinity materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.