Abstract

Intact soil blocks with a surface area of 1.8 × 1.6 m, 1.0 m deep, were excavated in a coarse sandy loam. The sides of the soil blocks were supported with plywood before using hydraulic rams to force a steel cutting plate beneath them. Disturbed soil blocks of the same depth as the intact blocks were also established. Experiments were conducted to determine purification efficiencies for biological oxygen demand (BOD), molybdate reactive phosphorus (MRP), nitrate and ammonium-N after the application of dirty water. A preliminary experiment is described where a low application of dirty water was applied to the soil blocks, 2 mm day−1. In addition, a chloride tracer was conducted for the duration of the experiment. Disturbed soil had a purification efficiency for BOD of 99% compared to 96% from intact soil (P<0.001). Purification efficiencies for MRP and ammonium-N were 100 and 99%, respectively, for the intact and disturbed soils. Nitrate-N concentration increased in leachate from both treatments reaching maximum concentrations of 15 and 8 mg l−1 from disturbed and intact soils, respectively. Chloride traces for each soil block followed similar patterns with 47 and 51% loss from disturbed and intact soils, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call