Abstract
In this paper, a new solution process of ( 1 / G ′ ) -expansion and ( G ′ / G , 1 / G ) -expansion methods has been proposed for the analytic solution of the Zhiber-Shabat (Z-S) equation. Rather than the classical ( G ′ / G , 1 / G ) -expansion method, a solution function in different formats has been produced with the help of the proposed process. New complex rational, hyperbolic, rational and trigonometric types solutions of the Z-S equation have been constructed. By giving arbitrary values to the constants in the obtained solutions, it can help to add physical meaning to the traveling wave solutions, whereas traveling wave has an important place in applied sciences and illuminates many physical phenomena. 3D, 2D and contour graphs are displayed to show the stationary wave or the state of the wave at any moment with the values given to these constants. Conditions that guarantee the existence of traveling wave solutions are given. Comparison of ( G ′ / G , 1 / G ) -expansion method and ( 1 / G ′ ) -expansion method, which are important instruments in the analytical solution, has been made. In addition, the advantages and disadvantages of these two methods have been discussed. These methods are reliable and efficient methods to obtain analytic solutions of nonlinear evolution equations (NLEEs).
Highlights
The analysis of analytic solutions of nonlinear evolution equations (NLEEs) plays a significant role in the study of nonlinear physical phenomena
As it is very difficult to obtain the solutions of NLEEs, in this study traveling wave solutions of Zhiber-Shabat equation are presented applying two complex methods using many complex operations and transformations
The accuracy of the attained solutions has been assured by putting them back into the original equations with the help of the computer package program
Summary
The analysis of analytic solutions of nonlinear evolution equations (NLEEs) plays a significant role in the study of nonlinear physical phenomena. Various techniques have been tried to obtained analytic solutions, such as the sine–cosine method [1], extended sinh-Gordon equation expansion method [2,3],. Our main purpose is to obtain the traveling wave solutions of the evolution equations in nonlinear dynamics. As it is known, scientific studies take place gradually.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.