Abstract

Five POM-based hybrid materials have been designed and synthesized based on different metal ions under hydrothermal conditions, namely, [Zn(Hfcz)(H(2)O)(3)](H(3)fcz)(SiMo(12)O(40)).3H(2)O (1), [Cd(2)(Hfcz)(6)(H(2)O)(2)](SiMo(12)O(40)).H(2)O (2), [Co(2)(Hfcz)(2)(SiW(12)O(40))](H(3)fcz)(2)(SiW(12)O(40)).10H(2)O (3), [Ni(2)(Hfcz)(4)(H(2)O)(2)](SiW(12)O(40)).5H(2)O (4) and [Ag(4)(Hfcz)(2)(SiMo(12)O(40))] (5), where Hfcz is fluconazole [2-(2,4-difluorophenyl)-1,3-di(1H-1,2,4-triazol-1-yl)propan-2-ol]. Their crystal structures have been determined by X-ray diffraction, elemental analyses, IR spectra, and thermogravimetric analyses (TGA). There are 1D mono and double chain-like metal-organic units in compounds 1 and 2, respectively. Polyoxometalates and metal-organic units co-crystallize through hydrogen bonds. In compound 3, metal-organic sheets are pillared by one kind of polyanion through covalent connections to generate a sandwich double-sheet. The other kind of polyanion acts as a counter-ion and lies in two adjacent sandwich double-sheets through non-covalent interactions. Polyanions covalently link metal-organic sheets to extend to an unusual 3D 5-connected framework with the (4(4).6(6)) topology in 4. In compound 5, polyanions link metal-organic chains to form a sheet through covalent connections. It is interesting that compound 5 shows an intricate (4,5,10)-connected framework with (4(4).6(2))(4)(4(8).6(2))(2)(4(14).6(19).8(12)) topology based on two kinds of Ag cations as four-connected and five-connected nodes, and polyanions as ten-connected nodes, when AgO interactions are considered. It represents the highest connected network topology presently known for polyoxometalate systems. The structural differences among 1-5 indicate the importance of different metal-organic units, coordination modes of polyanions for framework formation, and the interactions between polyanions and metal-organic units. In addition, the luminescent properties of compounds 1, 2 and 5, and electrochemical behaviours of compounds 1-5 have been investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.