Abstract
BackgroundRenal cell carcinoma (RCC) is one of the most common urological cancers and has a poor prognosis. RCC is classified into several subtypes, among which kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) are the two most common subtypes. Due to the lack of adequate screening and comparative analysis of RCC subtypes, effective diagnosis and treatment strategies have not yet been achieved.MethodsIn this study, 450K methylation array data were collected from The Cancer Genome Atlas (TCGA). The ‘limma moderated t-test’ and LASSO were used to construct diagnostic and subtyping models, and survival analysis was conducted online by GEPIA.ResultsWe built a model with 15 methylation sites, which showed high diagnostic and subtyping performance in specificity and sensitivity. At the same time, for potential clinical usability, we calculated the diagnostic and subtyping scores to classify RCC from normal tissue and distinguish the different RCC subtypes. Additionally, the CpG sites were mapped to their corresponding genes, which could also be used to predict the prognosis of RCC.ConclusionsDifferent methylation sites can be used as diagnostic and subtyping markers that are specific to RCC and RCC subtypes (KIRC and KIRP) with high sensitivity and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.