Abstract

AimThree-dimensional (3D) cell culture systems perform better in resembling tissue or organism structures compared with traditional 2D models. Organs-on-chips (OoCs) are becoming more efficient 3D models. This study aimed to create a novel simplified dentin-on-a-chip using microfluidic chip technology and tissue engineering for screening dental materials. MethodologyA microfluidic device with three channels was designed for creating 3D dental tissue constructs using stem cells from the apical papilla (SCAP) and gelatin methacrylate (GelMA). The study investigated the effect of varying cell densities and GelMA concentrations on the layer features formed within the microfluidic chip. Cell viability and distribution were evaluated through live/dead staining and nuclei/F-actin staining. The osteo/odontogenic potential was assessed through ALP staining and Alizarin red staining. The impact of GelMA concentrations (5 %, 10 %) on the osteo/odontogenic differentiation trajectory of SCAP was also studied. ResultsThe 3D tissue constructs maintained high viability and favorable spreading within the microfluidic chip for 3–7 days. A cell seeding density of 2 × 104 cells/μL was found to be the most optimal choice, ensuring favorable cell proliferation and even distribution. GelMA concentrations of 5 % and 10 % proved to be most effective for promoting cell growth and uniform distribution. Within the 5 % GelMA group, SCAP demonstrated higher osteo/odontogenic differentiation than that in the 10 % GelMA group. ConclusionIn 3D culture, GelMA concentration was found to regulate the osteo/odontogenic differentiation of SCAP. The study recommends a seeding density of 2 × 104 cells/μL of SCAP within 5 % GelMA for constructing simplified dentin-on-a-chip. Clinical SignificanceThis study built up the 3D culture protocol, and induced odontogenic differentiation of SCAP, thus forming the simplified dentin-on-a-chip and paving the way to be used as a well-defined biological model for regenerative endodontics. It may serve as a potential testing platform for cell differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call