Abstract
[2+2] Photocycloaddition of two olefins is a general method to assemble the core scaffold, cyclobutane, found in numerous bioactive molecules. A new approach to synthesize cyclobutanes through multicomponent cascade reactions by merging aldol reaction and Witting reaction with visible-light-induced [2+2] cycloaddition is reported. An array of cyclobutanes with high selectivity has been achieved from commercially available aldehydes, ketones (or phosphorus ylide), and olefins with visible-light irradiation of a catalytic amount of (fac-tris(2-phenylpyridinato-C2 ,N)iridium) ([Ir(ppy)3 ]) at room temperature. Control experiments and spectroscopic studies revealed that the triplet-triplet energy transfer from the excited [Ir(ppy)3 ]* to enones, generated in situ from aldehyde and ketone or aldehyde and phosphorus ylide, is responsible for these simple and efficient muticomponent transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.