Abstract

Water pollution caused by the massive use of medicines has caused significant environmental problems. This work first reports the synthesis and characterization of the Cu7 S4 /CuCo2 O4 (CS/CCO) yolk-shell microspheres via hydrothermal and annealing methods, and then investigates their photocatalytic performance in removing organic water pollutants. The 10-CS/CCO composite with yolk-shell microspheres exhibits the highest photodegradation rate of carbamazepine (CBZ), reaching 96.3% within 2h. The 10-CS/CCO also demonstrates more than two times higher photodegradation rates than the pure (Cu7 S4 ) CS and (CuCo2 O4 ) CCO. This outstanding photocatalytic performance can be attributed to the unique yolk-shell structure and the Z-scheme charge transfer pathway, reducing multiple reflections of the acting light. These factors enhance the light absorption efficiency and efficiently transfer photoexcited charge carriers. In-depth, photocatalytic degradation pathways of CBZ are systematically evaluated via the identification of degradation intermediates with Fukui index calculation. The insights gained from this work can serve as a guideline for developing low-cost and efficient Z-scheme photocatalyst composites with the yolk-shell structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.