Abstract

The most frequently used sulfonamide is sulfamethazine (SMZ) because it is often found in foods made from livestock, which is hazardous for individuals. Here, we have developed an easy, quick, selective, and sensitive analytical technique to efficiently detect SMZ. Recently, transition metal oxides have attracted many researchers for their excellent performance as a promising sensor for SMZ analysis because of their superior redox activity, electrocatalytic activity, electroactive sites, and electron transfer properties. Further, Cu-based oxides have a resilient electrical conductivity; however, to boost it to an extreme extent, a composite including two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets needs to be constructed and ready as a composite (denoted as g-C3N4/Cu2Y2O5). Moreover, several techniques, including X-ray diffraction analysis, scanning electron microscopy analysis, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy were employed to analyze the composites. The electrochemical measurements have revealed that the constructed g-C3N4/Cu2Y2O5 composites exhibit great electrochemical activity. Nevertheless, the sensor achieved outstanding repeatability and reproducibility alongside a low limit of detection (LOD) of 0.23 µM, a long linear range of 2 to 276 µM, and an electrode sensitivity of 8.86 µA µM-1 cm-2. Finally, the proposed GCE/g-C3N4/Cu2Y2O5 electrode proved highly effective for detection of SMZ in food samples, with acceptable recoveries. The GCE/g-C3N4/Cu2Y2O5 electrode has been successfully applied to SMZ detection in food and water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.