Abstract

Cu2O/MIL(Fe/Cu) composite was fabricated via an in-situ Cu-bridging strategy to enhance interfacial synergistic effect of photo-Fenton catalysis for thiacloprid (TCL) degradation. Characterization results showed that: (1) Cu2O was proved to grow on the surface of MIL(Fe/Cu) in Cu2O/MIL(Fe/Cu) composite and display a high BET surface area of 1553 m2/g; (2) Cu2O/MIL(Fe/Cu) reduced band gap from 2.5 to 1.3 eV and extended absorption from UV to visible region; (3) Cu-bridge was proved to promote the intimate interface between Cu2O and MIL(Fe/Cu), which accelerated charge transferred and shortened the binding gap and the reaction pathway from photo-induced electrons to Fenton-generated radicals. As a result, this boosted the redox reaction of Fe2+/Fe3+ and promoted the reversible degree of this catalytic redox ability of MIL(Fe). Catalytic performance exhibited that (1) Cu2O/MIL(Fe/Cu) showed a fast kinetics (2–40 times faster than the state-of-the-art catalysts) and ultra-high mineralization (82.3% within 80 min) for TCL degradation; (2) Cu2O/MIL(Fe/Cu) showed a promising cycling stability due to improved charge transfer ability that could protect Cu2O from photo-corrosion during photo-Fenton reaction; (3) The catalytic performance of Cu2O/MIL(Fe/Cu) was characterized and seven photocatalytic intermediates were identified by both HPLC/MS and Surface Enhanced Raman Spectroscopy. The cyanoimino group in TCL was proved for the first time to be attacked primarily. Moreover, among all the detected intermediates, thiazolidin-2-amine (P6) was found to be the most stable intermediate to be degraded, and it can directly influence the TOC determination during photodegradation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.