Abstract

Alkaline N-compounds (pyrrole, dopamine and 2-methylimidazole) were applied to induce crystal defects on UiO-66 via mechanochemical in-situ N-doping strategy and their role on its selective adsorption for cationic dyes i.e. rhodamine B (RhB) and safranine T (ST) were investigated systematically. Alkaline N-compounds coordination were proved to simultaneously modulate pore sizes and intensify surface alkalinity of the original UiO-66. The crystal defects constructed 3-D multi-point adsorption structure, which dramatically enhanced specific adsorption for RhB and ST in binary system. Results showed that pyrrole coordinated UiO-66 possessed 30% enhancement in surface area (1549.1 m2/g) with micropores at 9 and 12 Å (larger defects in UiO-66). Furthermore, temperature programmed desorption (H2O and NH3) and corrosion resistance test concluded that N-doped UiO-66 possessed improved alkali-resistance and higher alkaline surface compared to pristine UiO-66. Separation performance revealed that pyrrole-doped UiO-66 showed two times enhanced adsorption capacity for RhB (384.1 mg/g), and 223 times higher selectivity for equimolar RhB/ST than that of parent UiO-66. Textural characterization, DFT simulation and electronic factors concluded that proper defect size and alkaline surface endow the novel defective UiO-66 excellent selectivity, adsorption and recycling performances. Thus, our in-situ N-doping strategy has guiding significance to design MOFs with special and useful defects for unique selective adsorption system beyond the circle of organic dyes on industrial level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call