Abstract
Despite the promising achievements of immune checkpoint blockade (ICB) therapy for tumor treatment, its therapeutic effect against solid tumors is limited due to the suppressed tumor immune microenvironment (TIME). Herein, a series of polyethyleneimine (Mw = 0.8k, PEI0.8k )-covered MoS2 nanosheets with different sizes and charge densities are synthesized, and the CpG, a toll-like receptor-9 agonist, is enveloped to construct nanoplatforms for the treatment of head and neck squamous cell carcinoma (HNSCC). It is proved that functionalized nanosheets with medium size display similar CpG loading capacity regardless of low or high PEI0.8k coverage owing to the flexibility and crimpability of 2D backbone. CpG-loaded nanosheets with medium size and low charge density (CpG@MM -PL ) could promote the maturation, antigen-presenting capacity, and proinflammatory cytokines generation of bone marrow-derived dendritic cells (DCs). Further analysis reveals that CpG@MM -PL effectively boosts the TIME of HNSCC in vivo including DC maturation and cytotoxic T lymphocyte infiltration. Most importantly, the combination of CpG@MM -PL and ICB agents anti-programmed death 1 hugely improves the tumor therapeutic effect, inspiring more attempts for cancer immunotherapy. In addition, this work uncovers a pivotal feature of the 2D sheet-like materials in nanomedicine development, which should be considered for the design of future nanosheet-based therapeutic nanoplatforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.