Abstract

Covalent triazineframeworks (CTFs) are promising heterogeneous photocatalyst candidates owing to their excellent stability, conjugacy, and tunability. In this study, a series of CTFs decorated with different substituents (H, MeO, and F) were synthesised and utilised as photocatalysts for C-H activation reactions. The corresponding optoelectronic properties could be precisely regulated by the electronic effects of different substituents in the nanopore channels of the CTFs; these CTFs were effective photocatalysts for C-H activation in organic synthesis due to their unique structures and optoelectronic properties. Methoxy-substituted CTF (MeO-CTF) exhibited extraordinary catalytic performance and reusability in C-H functionalization by constructing an electronic donor-acceptor system, achieving the highest yield in the photocatalytic C3-H hydroxylation of 2-phenylimidazole[1,2-α]pyridine. This strategy provides a new scaffold for the rational design of CTFs as efficient photocatalysts for organic synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.