Abstract
An ideal photocatalyst not only offers high photo-generated electron-hole pairs separation ability, but also has suitable redox potential. Here, a direct Z-scheme core-shell structured WO3@SnS2 hetero-junction photo-catalyst was prepared via two-step hydrothermal method, in which the core-shell structure, rod morphology and micro-composition of hetero-junction were confirmed through X-ray diffraction (XRD) patterns, Fourier transform infrared (FTIR) spectra, field emission scanning electron microscope (FE-SEM), transmission electron microscope (FEI-TEM) and X-ray photoelectron spectra (XPS). Their enhanced photo-catalytic abilities were evaluated by photo-degradation of Rhodamine (RhB), photo-reduction of dichromate (Cr6+) solution and photo-catalytic H2 production through comparing with pure WO3, SnS2 or the mixture of WO3 and SnS2 (WO3/SnS2). The absorption spectra and electrochemical properties were used to estimate the band gap of samples, the expanded spectral absorption capacity and improved electron-hole separation ability, which are important factors for enhanced photocatalytic performance. Furthermore, the direct Z-scheme charge transfer mechanism of WO3@SnS2 hetero-junction was determined through the combination of theoretical calculation and experimental characterizations, which played a decisive role for retaining excellent redox potential and increasing photo-catalytic ability of WO3 and SnS2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.