Abstract

Thermal engineering dramatically impacts the efficiency of microelectronics, but the corresponding technology lags far behind the need. For energy-efficient thermal management, a Cu-Cu2O film with highly ordered core-shell nanowire arrays and a good self-protection property was successfully fabricated using the magnetron sputtering method. The dense arrangement of nanowires in the films enhances the electronic transport property (220 mΩ sq-1), while the modified stable Cu2O layer maintained its perfect heat dissipation property, along with long-term thermal stability. The core-shell and nanogaps structure imparted an anisotropic thermal conductivity, where the out-plane electronic thermal conductivity (321 ± 16 W m-1 K-1) was 33.6 times higher than the in-plane value. To study the role of anisotropic properties in heat dissipation, a boiling experiment and thermal simulation were undertaken. The Cu-Cu2O core-shell electrode was beneficial to elevate the heat transfer coefficient, which would cause a fast directional transport and reduction of interfacial superheating. We demonstrated that an advancement of microelectronics could be achieved by integrating Cu electrodes with an ordered architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.