Abstract

This paper considers the stabilization of nonlinear control affine systems that satisfy Jurdjevic–Quinn conditions. We first obtain a differential one-form associated to the system by taking the interior product of a non vanishing two-form with respect to the drift vector field. We then construct a homotopy operator on a star-shaped region centered at a desired equilibrium point that decomposes the system into an exact part and an anti-exact one. Integrating the exact one-form, we obtain a locally-defined dissipative potential that is used to generate the damping feedback controller. Applying the same decomposition approach on the entire control affine system under damping feedback, we compute a control Lyapunov function for the closed-loop system. Under Jurdjevic–Quinn conditions, it is shown that the obtained damping feedback is locally stabilizing the system to the desired equilibrium point provided that it is the maximal invariant set for the controlled dynamics. The technique is also applied to construct damping feedback controllers for the stabilization of periodic orbits. Examples are presented to illustrate the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.