Abstract

Abstract The double exponential formula, or DE formula, is a high-precision integration formula using a change of variables called a DE transformation; it has the disadvantage that it is sensitive to singularities of an integrand near the real axis. To overcome this disadvantage, Slevinsky & Olver (2015, On the use of conformal maps for the acceleration of convergence of the trapezoidal rule and Sinc numerical methods. SIAM J. Sci. Comput., 37, A676–A700) attempted to improve the formula by constructing conformal maps based on the locations of singularities. Based on their ideas, we construct a new transformation formula. Our method employs special types of the Schwarz–Christoffel transformation for which we can derive the explicit form. The new transformation formula can be regarded as a generalization of DE transformations. We confirm its effectiveness by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.