Abstract
Effects of outliers on mean, standard deviation and Pearson's correlation coefficient are well known. The Principal Components analysis uses Pearson's product moment correlation coefficients to construct composite indices from indicator variables and hence may be very sensitive to effects of outliers in data. Median, mean deviation and Bradley's coefficient of absolute correlation are less susceptible to effects of outliers. This paper proposes a method to obtain composite indices by maximization of the sum of absolute Bradley's correlation coefficients between the indicator variable and the derived composite index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.