Abstract
Kobayashi [13] introduced complex contact manifolds as a variant of real contact manifolds. Later, Ishihara and Konishi [11] defined normality of complex contact manifolds as for Sasakian manifolds in real contact geometry. In this paper, we construct normal complex contact manifolds via reduction from hyperk\{a}hler manifolds, and give a new example of normal complex contact manifolds. To check the normality for the new examples, we give a useful identity about sectional curvatures of normal complex contact manifolds. We also give an explicit example of a non-normal complex almost contact metric structure on $S^{4m+3} \times S^{4n+3}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.