Abstract

The study by Yudovich [V.I. Yudovich, Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid, J. Math. Mech. 29 (1965) 587–603] on spatially periodic flows forced by a single Fourier mode proved the existence of two-dimensional spectral spaces and each space gives rise to a bifurcating steady-state solution. The investigation discussed herein provides a structure of secondary steady-state flows. It is constructed explicitly by an expansion that when the Reynolds number increases across each of its critical values, a unique steady-state solution bifurcates from the basic flow along each normal vector of the two-dimensional spectral space. Thus, at a single Reynolds number supercritical value, the bifurcating steady-state solutions arising from the basic solution form a circle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.