Abstract

The most widely used oral whole-cell-recombinant B subunit cholera vaccine contains the nontoxic cholera toxin B subunit (CTXB) and either heat- or formalin-killed Vibrio cholerae O1 strains. Vibrio cholerae O1 strains in the vaccine provide antibacterial immunity, and CTXB contributes to the vaccine's efficacy by stimulating production of anti-CTXB antibody. Various attempts have been made to increase CTXB production. In this study, the mariner-FRT transposon delivery system developed by Chiang and Mekalanos was used to place the ctxB gene under the control of a strong chromosomal promoter in a nontoxigenic V. cholerae El Tor strain, M7922. The expression level of CTXB in transposon insertion mutant clones was screened by ganglioside-dependent enzyme-linked immunosorbent assay. Among CTXB-producing V. cholerae clones that were isolated, M7922-C1 produced the highest amount of CTXB (3.17+/-1.69 microg mL(-1)). M7922-C1 harbors a single insertion of ctxB into VC0972, which encodes a putative porin protein. Although the level of CTXB expression in this strain was not exceptionally high, this study indicates the possibility of using this delivery system to construct vaccine strains that overexpress specific antigens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.