Abstract

AbstractTo elaborately construct a novel and efficient photothermal antibacterial nanoplatform is a promising strategy for treating bacterial wound infections. In this work, a composite hydrogel (CS/AM NSs hydrogel) with outstanding antibacterial ability is constructed by incorporating antimonene nanosheets (AM NSs) with extraordinary photothermal properties into the network structure of chitosan (CS). When cultured with bacteria, the CS/AM NSs hydrogel can gather bacteria on the surface through the interaction of CS with the bacterial cell membrane. Subsequently, the intrinsic bactericidal property of CS will kill some of the bacteria. After the introduction of near‐infrared laser, the AM NSs effectively convert light energy into localized heat to eliminate residual bacteria. By virtue of the synergistic action between the capture effect of CS and the photothermal effect of AM NSs, the CS/AM NSs hydrogel shows predominant antibacterial behavior against Escherichia coli and Staphylococcus aureus. In vitro assay and in vivo tests of infected full‐thickness defect wound healing confirm the satisfactory biocompatibility and antibacterial ability. Overall, this work reveals that the CS/AM NSs hydrogel holds great potential as a broad‐spectrum antibacterial wound dressing for treating bacteria‐infected wounds. Additionally, this is the first report of the application of AM NSs in the field of antibacterial treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call