Abstract
The fabrication of carbon nanocoil (CNC)-based chiral-dielectric-magnetic trinity composites holds great significance in low-frequency microwave absorption fields. However, it is not clear that how the different magnetic systems affect the magnetic and frequency responses of the composites. Herein, four types of magnetic metals, FeCo, CoNi, FeNi, and FeCoNi, are selected to be combined with the chiral templates respectively, resulting in four types of chiral-dielectric-magnetic composites with similar morphology. The CNC templates endow all the composites with excellent dielectric loss. Further permeability analysis and the micro-magnetic simulation confirm that the frequency response region can be well adjusted by changing the magnetic systems with specific magnetic resonance modes and magnetic domain motion. Due to the synergistic effect between magnetism, chirality, and dielectricity, the FeNi-based composites exhibit the best low-frequency microwave absorption performance. The minimum RL of -60.7 dB is achieved at 6.7 GHz with an ultra-low filling ratio of 10%, and the EAB value in low-frequency region is extended to 3.7 GHz. This study provides further guidelines for the design of the chiral-dielectric-magnetic trinity composites in low-frequency microwave absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.