Abstract

Gossypol, a secondary metabolite stored in the glands of cotton, protecting cottonseed from consumption of human and monogastric animal. This ability is unique to the tribe Gossypieae. Although the relationship between gossypol and pigment gland has been studied for a long time, the development mechanism of pigment gland has not been investigated at molecular level. Here we described a simple and efficient method for constructing a normalized cDNA library from a cotton mutant, Xiangmian-18, during its pigments gland forming stage. It combined switching mechanism at 5′-end of RNA transcript (SMART) technique and duplex-specific nuclease (DSN) normalization methods. In a model experiment, double-stranded cDNAs were synthesized from mRNAs, processed by normalization and Sfi I restriction endonuclease, and finally the cDNAs were ligated to pDNR-LIB vector. The ligation mixture was transformed into E. coli JM109 by electroporation. Counting the number of colonies, the titer of the original library was 5.86 × 10 5 cfu/ml in this library. Electrophoresis gel results indicated the fragments ranged from 800 bp to 2 kb, with the average size of 1400 bp. Random picking clones showed that the recombination rate was 94%. The results showed that the cDNA library constructed successfully was a full-length library with high quality, and could be used to screen the genes related to development of pigments gland cottons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call