Abstract

Abstract A C60 monolayer was constructed by a multi-step creep method for the first time. In the case that a dilute C60 benzene solution of 1×10-5 M (1 M = 1 mol dm-3) was spread on the water surface, C60 molecules formed into highly organized 2-dimensional crystalline domains. On the other hand, in the case of the conventional continuous compression method up to a low surface pressure below 15 mN m-1, the C60 monolayer-like aggregates were formed with a lot of vacancies. Each monolayer-like C60 aggregate was easily collapsed into small fragments and changed into 3-dimensional aggregates at a high surface pressure above 20 mN m-1. The C60 film could not full up the vacancies during continuous compression, since the C60 molecules formed rigid aggregates. These results clearly indicate that structural relaxation at a low surface pressure was required to construct the defect-diminished C60 monolayer. The occupied area of a C60 molecule in the monolayer prepared by the multi-step creep method was in good agreement with that of a 2-dimensional C60 crystal calculated from lattice constants of a 3-dimensional C60 crystal. The surface morphology of the C60 monolayer prepared by the multi-step creep method was homogeneous, and C60 molecules in the monolayer were closely and regularly packed in a hexagonal array. The hexagonal packing of the C60 molecules was confirmed on the basis of atomic force microscopic and electron diffraction observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.