Abstract

We consider the problem of creating tighter-fitting bounding volumes (more specifically rectangular swept spheres) when constructing bounding volume hierarchies (BVHs) for complex 3D geometries given in the form of unstructured triangle meshes/soups with the aim of speeding up our IPS Path Planner for rigid bodies, where the triangles often have very different sizes. Currently, the underlying collision and distance computation module (IPS CDC) does not take into account the sizes of the triangles when it constructs BVHs using a top-down strategy. To split triangles in a BVH node into two BVH nodes, IPS CDC has to compute both the split axis and the split position. In this work, we use the principal axes of the tensor of inertia as the potential split axes and the center of mass as the split position, where the computations of both the tensor of inertia and the center of mass require knowledge of the areas of the triangles. We show that our method improves performance (up to 20 % faster) of our IPS Path Planner when it is used to plan collision-free disassembly paths for three different test cases taken from manufacturing industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call