Abstract

Abstract The application of semiconductor photocatalysts in wastewater treatment has received increasingly attentions because of its potential utilization of solar energy. In this study, a novel visible-light-driven (VLD) BiOCOOH/g-C3N4 composite photocatalyst was successful synthesized by a facile hydrothermal method. Afterwards, physicochemical properties of the resulting samples were investigated through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface areas, UV–visible diffuse reflectance spectroscopy (UV–vis DRS), transient photocurrent density, Mott-Schottky (M−S) and electrochemical impedance spectroscopy (EIS) measurement. Furthermore, the visible light photocatalytic (PC) performance was evaluated through the degradation of amido black 10B dye. All results indicated that the combination of g-C3N4 and BiOCOOH could exhibited greatly visible light absorbance and photo-generated charge separation efficiency, thereby resulting in the enhanced PC performance of BiOCOOH/g-C3N4 composite photocatalyst. The optimal Bi/C molar rate in BiOCOOH/g-C3N4 composite was determined to be 1/1, and the corresponding photodegradation rate for amido black 10B was 0.01794 min−1, which was nearly 2.19 and 5.73 folds higher than that of pure g-C3N4 and BiOCOOH. The possible mechanism of the PC reaction was also discussed in detail. Furthermore, BiOCOOH/g-C3N4 composite photocatalyst performed good reusability and stability even after four recycle utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call