Abstract

Using a finite field approach, a novel algebraic construction of low-density parity-check (LDPC) convolutional codes with fast encoding property is proposed. According to the matrices of quasi-cyclic (QC) codes constructed based on the multiplicative groups of finite fields and the algebraic property that a binary circulant matrix is isomorphic to a finite ring, we first generate a polynomial-form parity-check matrix of an LDPC convolutional code under a given rate over a given finite field. Then some related modifications are made upon the original polynomial-form matrix to obtain the new one with fast encoding property. Simulation results show that the proposed LDPC convolutional codes have good performance with the iterative belief propagation decoding algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call