Abstract
The problem of the definition and estimation of generative models based on deformable templates from raw data is of particular importance for modeling non-aligned data affected by various types of geometric variability. This is especially true in shape modeling in the computer vision community or in probabilistic atlas building in computational anatomy. A first coherent statistical framework modeling geometric variability as hidden variables was described in Allassonnière, Amit and Trouvé [J. R. Stat. Soc. Ser. B Stat. Methodol. 69 (2007) 3–29]. The present paper gives a theoretical proof of convergence of effective stochastic approximation expectation strategies to estimate such models and shows the robustness of this approach against noise through numerical experiments in the context of handwritten digit modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.