Abstract

According to a component analysis of RP3 aviation kerosene and eight surrogate models′ comparative data, a surrogate model comprising n-dodecane/1,3,5-trimethylcyclohecane/n-propylbenzene (73.0%/14.7%/12.3%, mass fraction) was obtained. A detailed mechanism for the combustion of RP-3 surrogate fuel at high temperature was developed using an automatic generation software package, ReaxGen. Ignition delay times simulated using this mechanism were compared with experimental data. A detailed mechanism was reduced by adopting rate-of-production analysis and approximate trajectory optimization algorithm (ATOA) reduced methods. Finally, the sensitivity of ignition delay time was analyzed under conditions of different equivalent ratios and pressures using the reduced mechanism. Differences in key reactions contributing to the ignition delay time were identified at different equivalent ratios. The results indicate that our mechanisms can characterize the ignition delay time during combustion of RP-3 kerosene at high temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call