Abstract
Based on previous bioinformational analytical results [Shu ZY, et al. Biotechnol Prog 2009;25:409–16], four A. niger lipase (ANL) mutants, ANL-Ser84Gly, ANL-Asp99Pro, ANL-Lys108Glu and ANL-EαH (obtained by replacing the lid domain of ANL with the corresponding domain from A. niger feruloyl esterase), were constructed to screen out ANL mutants with oil–water interface independence. ANL-S84G displayed a pronounced interfacial activation, while ANL-D99P and ANL-K108E displayed no interfacial activation. The specific activity of ANL-S84G towards p-nitrophenyl esters decreased from 29.8% to 76.5% compared with that of ANL, while the specific activity of ANL-D99P towards p-nitrophenyl palmitate increased 2.2-fold. The thermostability of ANL-K108E was almost unchanged, while the thermostability of ANL-S84G and ANL-D99P significantly decreased compared with that of ANL. The construction of oil–water interface-independent ANL mutants would help to further understand the mechanism of lipase interfacial activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.