Abstract
An antimagic labeling of a graph with p vertices and q edges is a bijection from the set of edges to the set of integers {1, 2, . . . , q} such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. A graph is antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that that every connected graph, except K2, is antimagic. Recently, using completely separating systems, Phanalasy et al. showed that for each \({k\geq 2,\,q\geq\binom{k+1}{2}}\) with k|2q, there exists an antimagic k-regular graph with q edges and p = 2q/k vertices. In this paper we prove constructively that certain families of Cartesian products of regular graphs are antimagic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.