Abstract

In order to improve the ability of urban multi-spatial information integration, a multi-spatial information integration model based on artificial intelligence is proposed. The empirical analysis model of urban multivariate geospatial information integration is established, and the statistical characteristics are analysed according to the information distribution. The multi-resolution clustering model of urban multi-spatial information is established by using the multi-regression parameter method. The methods of fuzzy feature extraction and associated feature mining were used to extract information features, and the constraint parameters of urban multivariate geospatial information integration were analysed by GIS parameter estimation and statistical analysis. The parameter optimisation model of urban multivariate geospatial information integration is established and the artificial intelligence learning algorithm is used to integrate urban multivariate geospatial information. The simulation results show that this method has a good adaptability to the integration of urban multi-spatial information, and is helpful to the spatial distribution planning of geographic information, and improves the ability of accurate mining and scheduling of urban multi-spatial information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.