Abstract

Microorganisms in the environment can be distinguished into dominant and rare microbial species based on their genes. It is difficult to obtain genetic information derived from rare microbial species (rare genes) because of the differences in relative abundance. DNA normalization is an approach that is used to obtain genetic information derived from rare microbial species from an environmental sample. This method involves the addition of adapter sequences for the amplification, denaturation, and reassociation of the DNA fragments and single-stranded DNA (ssDNA)/double-stranded DNA (dsDNA) separation. In this method, the amount of a high-copy-number of DNA fragments and a low-copy-number of DNA fragments can be equalized. Improvements in this technique are expected to provide novel genetic information or genes in rare microbial species. However, few model experimental systems have been reported to validate the DNA normalization techniques. This study is aimed to improve the DNA normalization technique used to obtain genetic information of rare genes from rare microbial species. An experimental study was constructed with two antibiotic resistance genes, whose copy numbers differed up to a million-fold. Both genes were mixed and the mixture of DNA fragments, of high- and low-copy-number, containing these genes was normalized by separating ssDNA/dsDNA fragments using hydroxyapatite. Normalized DNA fragments were introduced into Escherichia coli and DNA normalization was evaluated by counting colonies. Moreover, we improved the method to amplify a low-copy-number of DNA fragments by the addition of adapter sequences to DNA fragments using HiDi DNA polymerase to increase the efficiency of DNA normalization. This normalization method was achieved with a 100,000-fold difference. These methods allowed for quantitative evaluation of the DNA normalization efficiency. The experimental data and methods obtained in this study are expected to improve the DNA normalization efficiency to obtain novel genetic information or genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call