Abstract
An engineered yeast with emission of fluorescence from the cell surface was constructed. Cell surface engineering was applied to display a visible reporter molecule, green fluorescent protein (GFP). A glucose-inducible promoter GAPDH as a model promoter was selected to control the expression of the reporter gene in response to environmental changes. The GFP gene was fused with the gene encoding the C-terminal half of alpha-agglutinin of Saccharomyces cerevisiae having a glycosylphosphatidylinositol anchor attachment signal sequence. A secretion signal sequence of the fungal glucoamylase precursor protein was connected to the N-terminal of GFP. This designed gene was integrated into the TRP1 locus of the chromosome of S. cerevisiae with homologous recombination. Fluorescence microscopy demonstrated that the transformant cells emitted green fluorescence derived from functionally expressed GFP involved in the fusion molecule. The surface display of GFP was further verified by immunofluorescence labeling with a polyclonal antibody (raised in rabbits) against GFP as the first antibody and Rhodamine Red-X-conjugated goat anti-rabbit IgG as the second antibody which cannot penetrate into the cell membrane. The display of GFP on the cell surface was confirmed using a confocal laser scanning microscope and by measuring fluorescence in each cell fraction obtained after the subcellular fractionation. As GFP was proved to be displayed as an active form on the cell surface, selection of promoters will endow yeast cells with abilities to respond to changes in environmental conditions, including nutrient concentrations in the media, through the emission of fluorescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.